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Abstract: We present a new exact black hole solution in three dimensional Einstein

gravity coupled to a single scalar field. This is one of the extended solutions of the BTZ

black hole and has in fact AdS3 geometries both at the spatial infinity and at the event

horizon. An explicit derivation of Virasoro algebras for CFT2 at the two boundaries is

shown to be possible à la Brown and Henneaux’s calculation. If we regard the scalar field

as a running coupling in the dual two dimensional field theory, and its flow in the bulk as

the “holographic” renormalization group flow, our black hole should interpolate the two

CFT2 living at the infinity and at the horizon. Following the Hamilton-Jacobi analysis by

de Boer, Verlinde and Verlinde, we calculate the central charges cUV and cIR for the CFT2

on the infinity and the horizon, respectively. We also confirm that the inequality cIR < cUV

is satisfied, which is consistent with the Zamolodchikov’s c-theorem.
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1. Introduction

It has been believed that three dimensional gravity with negative cosmological constant

is an important key to uncover some aspects of the quantum gravity. A vacuum solution

is described by three dimensional anti-de Sitter (AdS3) geometry globally [1], and a black

hole solution with mass and angular momentum (BTZ black hole) is constructed from

locally AdS3 geometry with appropriate identifications of boundaries [2]. All these geome-

tries become asymptotically AdS3, and two dimensional conformal field theory (CFT2) is

expected to exist at the boundary of the three dimensional geometry [3]. This is one of

important examples of AdS/CFT correspondence [4], which enables us to evaluate physi-

cal quantities in CFT from the gravity side [5, 6]. Thus many efforts have been directed

to understand quantum nature of the three dimensional gravity from the viewpoint of

AdS/CFT correspondence.

In fact, by using the canonical formalism, Brown and Henneaux showed that general

coordinate transformations which preserve the boundary behavior of the geometries form

Virasoro algebras for left and right movers [3]. Furthermore they succeeded to evaluate

central extensions of these algebras and found that the central charges for left and right
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movers take the same value. From the CFT2 viewpoint, the globally AdS3 corresponds to

the ground state, and the BTZ black hole does to excited states. Surprisingly, the macro-

scopic entropy of the BTZ black hole is explained by counting the number of degenerate

states in CFT2 [7].

The Brown-Henneaux’s canonical approach has been applied to several interesting

three dimensional theories. In ref. [8], the gravity theory with higher derivative corrections

was considered. The values of central charges are scaled because of the higher deriva-

tive terms. An application to the topologically massive gravity was done in ref. [9], and

left-right asymmetric central charges were derived due to the gravitational Chern-Simons

term. On the other hand, the canonical approaches to the theories of Einstein gravity

coupled to scalar fields were investigated in refs. [10]–[16]. Especially, it was shown in [11]

that by the canonical formalism the Virasoro algebras are also realized on the asymptotic

boundary of the Mart́ınez-Zanelli black hole [10], which has the AdS3 geometry only at the

spatial infinity. A microscopic entropy at the spatial infinity derived by Cardy’s formula

was different from the macroscopic entropy evaluated at the horizon, and it only gives a

maximum possible entropy [17, 11, 15].

The purpose of the present paper is to construct the black hole solution with a non-

trivial scalar potential, which allows the AdS3 geometry not only at the infinity but also

at the horizon. Our black hole solution is one of extensions of the extremal BTZ black

hole and no longer becomes AdS3 between the spatial infinity and the horizon.1 Hence,

two CFT2 should exist on the boundaries of the infinity and on the horizon with different

central charges since effective radii of two AdS3 are different, which are related to the depth

of the potential.

Actually we show how to construct the Virasoro algebras for CFT2 at two boundaries.

At the spatial infinity, we can employ the Brown-Henneaux’s approach and estimate the

values of the central charges. Near the horizon, however, we need to impose different

boundary conditions for locally AdS3 geometries which are preserved under the general

coordinate transformations. Recently, for the four dimensional extremal Kerr black hole,

Guica, Hartman, Song and Strominger [19] found proper boundary conditions and derived

the Virasoro algebra at the horizon by taking Bardeen-Horowitz’s near horizon limit [20].2

Since the black hole solution which we present in this paper is also extremal and the near

horizon geometry is the same after neglecting an extra direction, it is straightforward to

adapt their results to our case. We calculate the central charges for the CFT2 dual to AdS3

at the infinity and the horizon, respectively.

Since our solution contains two fixed points which correspond to conformal field theo-

ries, it is interesting to investigate the renormalization group flow between them. According

to the idea of “holography”, a change of the energy scale in the field theory is related to

that of the radial coordinate on the gravity side [25 – 27]. At each position of the radial

coordinate, two dimensional non-conformal field theory is realized on the surface. The

UV or IR region of the field theory corresponds to the spatial infinity or horizon in the

1A black hole solution which interpolates two AdS2 is discussed in [18].
2In refs. [17, 21], the Virasoro algebra at the stretched horizon was derived with the use of the canonical

symplectic form. See also refs. [22 – 24] for further discussion.

– 2 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
0

gravity theory. In ref. [27], de Boer, Verlinde and Verlinde showed that the Hamilton-

Jacobi equation for the bulk gravity implies the Callan-Symanzik equation for the dual

field theory on the surface of the fixed radial coordinate. The scalar fields can be identified

with running couplings if the radial coordinate of the bulk can be seen as the cut-off scale

for the dual field theory, and flows of their solutions in the bulk are understood as the

holographic renormalization group flow [25]–[31]. Generalizations to gravity theories with

higher derivative terms are done in refs. [32, 33].

By using the Hamilton-Jacobi formalism, we derive the flow equation for our black hole

solution, and calculate the central charges cUV and cIR from the conformal anomaly. It is

confirmed that the inequality cIR < cUV is satisfied independently of the parameter of the

potential, and that the c-function defined from the bulk gravity monotonically decreases

with respect to the scale. These results are consistent with the Zamolodchikov’s c-theorem

for the two dimensional field theory [34]. The correspondence of the bulk/boundary theory

is actually ensured by these computation of the central charges and the derivation of the

beta function, the Callan-Symanzik equation and the c-function from the bulk gravity.

Therefore, from these observations, we conclude that our black hole solution interpolates

the two CFT2 at the infinity and the horizon.

Our paper is organized as follows. In section 2, we show the new black hole solution for

the three dimensional gravity coupled to a scalar field. In section 3, we explicitly evaluate

the central charges of the Virasoro algebras at the spatial infinity and at the horizon. In

section 4, after presenting some reviews on the Hamilton-Jacobi formalism, we derive the

conformal anomaly for the CFT2 on the infinity and the horizon, and the Callan-Symanzik

equation for the dual field theory. The confirmation of the c-theorem is also mentioned.

Results and future discussion are summarized in section 5. Some technical calculations are

relegated in appendices A and B.

2. The black hole solution

In this section, we discuss a black hole solution which interpolates two AdS3 geometries

at the infinity and the horizon. Let us start with the three dimensional Einstein gravity

coupled to a scalar field:

I =
1

16πGN

∫

d3x
√
−G

[

R − V (φ) − 1

2
∂µφ∂µφ

]

, (2.1)

where GN is the Newton constant and µ = 0, 1, 2. The metric and the scalar field are de-

noted by Gµν and φ, respectively. The variation of the action gives the following equations

of motion

Rµν − 1

2
∂µφ∂νφ − GµνV (φ) = 0,

1√
−G

∂µ

(√
−G∂µφ

)

− ∂V (φ)

∂φ
= 0, (2.2)

and in order to solve these equations, we choose the BTZ-like ansatz for the metric as

ds2 = −e2f(r)dt2 + e2h(r)dr2 + r2
(

dϕ + eg(r)dt
)2

. (2.3)
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Figure 1: Shape of the potential V (φ).

Substituting the ansatz into eq. (2.2), we obtain five differential equations,

0 = V +
1

r
e−2hf ′ + e−2hf ′2 − 1

2
e−2f+2g−2hr2g′2 − e−2hf ′h′ + e−2hf ′′, (2.4)

0 = −3g′ + rf ′g′ − rg′2 + rg′h′ − rg′′, (2.5)

0 = −V +
1

r
e−2hh′ − e−2hf ′2 +

1

2
e−2f+2g−2hr2g′2 + e−2hf ′h′ − e−2hf ′′ − 1

2
e−2hφ′2, (2.6)

0 = −V − 1

r
e−2hf ′ − 1

2
e−2f+2g−2hr2g′2 +

1

r
e−2hh′, (2.7)

0 = −∂V

∂φ
+ e−2h

(1

r
+ f ′ − h′

)

φ′ + e−2hφ′′. (2.8)

It seems that five unknown functions f(r), g(r), h(r), φ(r) and V (φ(r)) can be determined

completely by solving the above five equations. This is not true, however. Multiplying φ′

by eq. (2.8), we obtain

0 = −V ′ + e−2h
(1

r
+ f ′ − h′

)

φ′2 +
1

2
e−2h(φ′2)′. (2.9)

From eqs. (2.4), (2.5) and (2.6), we express g, V (φ) and φ′2 as functionals of f and h. Then

we find that the equation derived by inserting these into eq. (2.9) is equivalent to eq. (2.7).

Since we have four equations among five functions, let us choose the potential energy

in the form of

V (φ) =
1

8a4ℓ2

(

−16 − 4φ2 − φ4 + 32e−a2+ φ2

4 − 16e−2a2+ φ2

2 + 4φ2e−2a2+ φ2

2

)

, (2.10)

where a is a dimensionless parameter.3 A shape of the potential is illustrated in figure 1.

Extrema of the potential are realized at φ = 0 and φ = ±2a, and the values of the

potential energy become negative, V (0) = −2/L2 and V (±2a) = −2/ℓ2. Here we defined

L ≡ a2ℓ

1 − e−a2 , (2.11)

3In practice, the form of the potential energy is obtained by fixing that of the scalar field as in eq. (2.12).
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which satisfies ℓ < L when 0 < a. Note that there are constant scalar solutions, φ(r) = 0

and φ(r) = 2a. In these cases, the geometries reduce to extremal BTZ black holes which

asymptotically become AdS3 with the radius L and ℓ. Therefore it is expected that a

solution which interpolate between φ = 0 and φ = 2a will generate the CFT2-interpolating

black hole. In fact, it is possible to solve four equations and obtain f(r), g(r), h(r) and

φ(r) which interpolate between φ(∞) = 0 and φ(r0) = 2a,

e2f(r) =
r2

a4ℓ2

(

e−a2r2
0/r2 − e−a2

)2
,

e2h(r) =
a4ℓ2

r2

[

1 − ea2(r2
0/r2−1)

]−2
,

eg(r) =
1

a2ℓ

(

1 − e−a2r2
0/r2

)

, (2.12)

φ(r) = 2a
r0

r
.

Here we focus our attention on the region 0 ≤ φ ≤ 2a, that is, r0 ≤ r, and ϕ is the angular

coordinate with the periodicity 2π. Notice that when a = 0, the solution becomes the

extremal BTZ black hole.

The thermodynamic properties of the black hole are evaluated at the horizon r = r0.

The temperature is obtained by the inverse of the periodicity of the Euclidean time,

T =
1

2π
e−h def

dr

∣

∣

∣

r=r0

= 0. (2.13)

Therefore the solution corresponds to an extremal black hole. The Bekenstein-Hawking

entropy is estimated by the area of the horizon as

SBH =
AH

4GN
=

πr0

2GN
. (2.14)

In the following, we see that this solution represents the extremal black hole which

enables us to have two AdS3 geometries at the spatial infinity and the horizon. First let us

investigate behaviors of the geometry around r = ∞ by taking the limit of r0 ≪ r. Then

the solution (2.12) approaches

ds2 ∼ − r2

L2

(

1 − 2Lr2
0

ℓr2

)

dt2 +
L2

r2

(

1 +
2e−a2

Lr2
0

ℓr2

)

dr2 + r2

(

dϕ +
r2
0

ℓr2
dt

)2

(2.15)

∼ − r2

L2
dt2 +

L2

r2
dr2 + r2dϕ2,

where L is defined in eq. (2.11). This is just the AdS3 geometry whose radius is L.

On the other hand, in order to find the near-horizon geometry of (2.3), we have to put

t = ea2 t′

ǫ
, r = r0 + ǫr′, ϕ = ϕ′ − ea2 − 1

a2ℓ

t′

ǫ
, (2.16)

and then in the limit ǫ → 0 we obtain

ds2 ∼ − 4

ℓ2
r′2dt′2 +

ℓ2

4

dr′2

r′2
+ r2

0

(

dϕ′ − 2

r0ℓ
r′dt′

)2

. (2.17)
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In fact, we can confirm that this is the same as the near horizon limit of the extremal BTZ

black hole whose radius is ℓ. This near horizon behavior follows from the extremality of

the black hole [20].

When the radial coordinate r is not around the spatial infinity r = ∞ or around the

horizon r = r0, the space-time is not AdS3. Therefore our solution interpolates two AdS3

geometries at the spatial infinity and the horizon.

3. Virasoro algebras at the spatial infinity and the horizon

3.1 Review of Brown-Henneaux’s canonical formalism

The solution constructed in the previous section approaches AdS3 geometry at r = ∞ and

r = r0, and it is expected that CFT2 is realized at each boundary. In this section we

explicitly show how to construct the Virasoro algebras at these critical points by using the

canonical formalism.

In order to construct the Virasoro algebras at the boundary of AdS3 geometry, let us

briefly review the Brown-Henneaux’s canonical formalism. The notations employed in this

section are the same as in ref. [9]. The ADM decomposition of the three dimensional metric

is expressed as

ds2 = −N2dt2 + gij

(

dxi + N idt
) (

dxj + N jdt
)

. (3.1)

By applying the ADM decomposition of the metric, the Lagrangian becomes

L =
√

gN
(

R(2) − V (φ) + KijKij − K2
)

+

√
g

2N
(φ̇ − N i∂iφ)2 −

√
gN

2
∂iφ∂iφ, (3.2)

where the dot represents the derivative with respect to the time coordinate t, and Kij =
1

2N (ġij − 2∇(iNj)). R(2) stands for the scalar curvature made from the two dimensional

metric gij . Momenta conjugate to gij and φ are given by πij =
√−g(Kij −gijK) and πφ =

1
N

√−g(φ̇ − N i∂iφ). Up to total derivative terms, the Hamiltonian density is expressed as

HD[ξ] = πij ġij + πφφ̇ − L

= ξ0

{

1√
g

(

(πij)
2 − (πi

i)
2 +

1

2
π2

φ

)

+
√

g

(

V (φ) − R(2) +
1

2
(∂iφ)2

)}

(3.3)

+ ξi

{

− 2
√

g∇j

(

1√
g
πj

i

)

+ πφ∂iφ

}

.

Here we introduced ξ0 and ξi which are related to “the Killing vector” ξ̄ via

(ξ0, ξr, ξϕ) = (Nξ̄t, ξ̄r + N r ξ̄t, ξ̄ϕ + Nϕξ̄t), (3.4)

and we choose ξ̄ = (1, 0, 0) for the Hamiltonian density. The Hamiltonian is given by

integrating over two dimensional spaces with an surface term Q[ξ] [35],

H[ξ] =

∫

d2xHD[ξ] + Q[ξ]. (3.5)

– 6 –
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The term Q[ξ] should be added so as to cancel surface variations of the Hamiltonian (3.3),

and an explicit form of the variation is given by

δQ[ξ] = δQG[ξ] + δQφ[ξ],

δQG[ξ] =

∫

dϕ
[√

gSijkr(ξ0∇kδgij −∇kξ
0δgij) + (2ξiπjr − ξrπij)δgij + 2ξiδπ

ir
]

, (3.6)

δQφ[ξ] = −
∫

dϕ
(

ξrπφ δφ +
√

gξ0∂rφ δφ
)

. (3.7)

Here Sijkl is defined by Sijkl = 1
2

(

gikgjl + gilgjk − 2gijgkl
)

. As is clear from the expression,

δQG[ξ] is the contribution from the metric and δQφ[ξ] is from the scalar field.

The algebraic structure of symmetric transformation group is obtained by the Poisson

bracket algebra of the Hamiltonian generator H[ξ]:

{H[ξ],H[η]}P = H
[

[ξ, η]
]

+ K[ξ, η], (3.8)

where K[ξ, η] is a possible central extension. The Dirac bracket {Q[ξ], Q[η]}D gives a surface

deformation of Q[ξ] with respect to Q[η], i.e., δηQ[ξ] = {Q[ξ], Q[η]}D. The charge Q[ξ]

forms a conformal group together with the central extension {Q[ξ], Q[η]}D = Q
[

[ξ, η]
]

+

K[ξ, η], and we immediately get δηQ[ξ] = Q
[

[ξ, η]
]

+ K[ξ, η]. If we set Q
[

[ξ, η]
]

= 0 for a

vacuum (φ = 0 or φ = 2a), the evaluation of the central charge reduces to

K
[

ξ, η
]

= δηQ[ξ]. (3.9)

Namely, we only have to substitute “the Killing vector” which preserves each geometry

into (3.6) and (3.7) in order to calculate the central charges.

3.2 Central charges at the spatial infinity

Near the infinity (r → ∞) the space-time (2.15) can allow the following behavior of

the solution,

Gtt = − r2

L2
+ O(1), Gtr = O(r−3), Gtϕ = ±O(1),

Grr =
L2

r2
+ O(r−4), Grϕ = O(r−3), Gϕϕ = r2 + O(1),

φ =
2ar0

r
+ O(r−1), (3.10)

where L is the radius of the AdS3 defined in eq. (2.11). When we define x± = t
L ±ϕ, “the

Killing vector” is calculated from (3.10),

ξ̄±t
n =

L

2
einx±

(

1 − L2n2

2r2

)

, ξ̄±r
n = −i

nr

2
einx±

, ξ̄±ϕ
n = ±1

2
einx±

(

1 +
L2n2

2r2

)

, (3.11)

– 7 –
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and ξ±m = ξ̄±µ
m ∂µ. We often call “+” left and “−” right. It is found from (3.10) that the

canonical variables behave as

grr =
L2

r2
+ O(r−4), grϕ = O(r−3), gϕϕ = r2 + O(1),

N =
r

L
+ O(r−1), N r = O(r−1), Nϕ = ±O(r−2),

πrr = O(r−1), πrϕ = O(r−2), πϕϕ = O(r−5),

φ =
2ar0

r
+ O(r−1), πφ = O(r−4). (3.12)

The explicit calculations are shown in the appendix A.1.

The computation of the term δηQ
G[ξ] becomes

1

16πGN
δη=ξ+

n
QG[ξ = ξ+

m] =
1

16πGN

∮

r=∞
dϕ
[√

gSijkr(ξ0∇kδηgij −∇kξ
0δηgij) + 2ξiδηπ

ir
]

= −i
L

8GN
m3 δm+n,0 − i

(3 + e−a2
)r2

0

8GNℓ
m δm+n,0, (3.13)

and the variation δηQ
φ[ξ] does

1

16πGN
δη=ξ+

n
Qφ[ξ = ξ+

m] = − 1

16πGN

∮

r=∞
dϕ

√
gξ0∂rφ δηφ

= −i
a2r2

0

8GNL
m δm+n,0. (3.14)

Combining these results and using the definition of L, we find that the central extension

of the Virasoro algebra is given by

1

16πGN
δη=ξ+

n
Q[ξ = ξ+

m] = −i
L

8GN
m3 δm+n,0 − i

r2
0

2GNℓ
m δm+n,0. (3.15)

A similar calculation shows that

1

16πGN
δη=ξ−n

Q[ξ = ξ−m] = −i
L

8GN
m3 δm+n,0. (3.16)

From the cubic term in m we conclude that left and right Virasoro algebras surely live at

the infinity (r → ∞) and two central charges take the same value,

cUV =
3L

2GN
. (3.17)

The linear dependences on m indicate the excitations of left and right zero modes of the Vi-

rasoro algebras, 2L0 and 2L̄0. Thus the geometry which we are considering corresponds to

LUV
0 =

r2
0

4GNℓ
, L̄UV

0 = 0, (3.18)

and only the left moving modes are excited. In this sense, we call this geometry chiral.

The sign of Gtϕ determines which modes are excited or not. In our solution (2.15) the sign

– 8 –
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of Gtϕ is plus, and left modes are excited. The field theory dual to extremal black holes

specified the sign of the angular momentum is chiral even at the infinity [19].

Mass and angular momentum are estimated by choosing the Killing vectors as a time

translation ξ̄ = (1, 0, 0) and a rotation ξ̄ = (0, 0, 1). Because they are related to the

horizon radius r0, we take the shift r0 → r0 + δr0 as an explicit deformation of δ in order

to know these quantities. With the use of δgrr =
2a6e−a2

ℓ2δ(r2
0)

(1−e−a2 )3r4
and δφ = 2aδr0

r , (3.6)

and (3.7) become

δM =
1

16πGN

∮

r=∞
dϕ

√
g
(

Sijkrξ0∇kδgij − ξ0∂rφ δφ
)

=
δ(r2

0)

4GN ℓL
, (3.19)

for ξ̄ = (1, 0, 0). In a similar way, we calculate

δJ =
1

16πGN

∮

r=∞
dϕ (2ξiδπ

ir) =
δ(r2

0)

4GNℓ
, (3.20)

for ξ̄ = (0, 0, 1). Therefore the mass and the angular momentum become

MUVL = JUV =
r2
0

4GNℓ
, (3.21)

which satisfies the extremal relation and consistent with eq. (3.18). Then using the Cardy’s

formula for the chiral CFT2 at the infinity, we obtain the entropy

SUV = 2π

√

cUVLUV
0

6
=

πr0

2GN

√

L

ℓ
. (3.22)

3.3 Central charges at the event horizon

The near horizon limit was given in eq. (2.16). Since this does not cover the full space-time,

we first transform the metric (2.17) to

ds2 =
ℓ2

4

[

−(1 + r̃2)dt̃2 +
dr̃2

1 + r̃2
+

(

2r0

ℓ
dϕ̃ − r̃dt̃

)2
]

, (3.23)

where we have defined [20]

t′ =
ℓ2

4

√
1 + r̃2 sin t̃

r′
,

r′ =
ℓ

2

(
√

1 + r̃2 cos t̃ + r̃
)

,

ϕ′ = ϕ̃ +
ℓ

2r0
log

∣

∣

∣

∣

cos t̃ + r̃ sin t̃

1 +
√

1 + r̃2 sin t̃

∣

∣

∣

∣

. (3.24)

Notice that 0 ≤ ϕ̃ ≤ 2π at t̃ = t′ = 0 due to 0 ≤ ϕ′ ≤ 2π. This geometry has an isometry

group of SL(2, R)R × SL(2, R)L.
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We are interested in the near horizon region where r̃ → ∞. According to [19] we

assume the boundary condition

Gt̃t̃ = −ℓ2

4
+ O(r̃−1), Gt̃r̃ = O(r̃−2), Gt̃ϕ̃ = −ℓr0r̃

2
+ O(1),

Gr̃r̃ =
ℓ2

4(1 + r̃2)
+ O(r̃−3), Gr̃ϕ̃ = O(r̃−1), Gϕ̃ϕ̃ = r2

0 + O(1),

φ = 2a. (3.25)

Here we have supposed a stronger condition of Gt̃t̃ than that in [19] because our near

horizon geometry (3.23) is exact AdS3, not warped AdS3. Then “the Killing vector” to the

first order

ξ̄ t̃
n = 0, ξ̄r̃

n = −inr̃einϕ̃, ξ̄ϕ̃
n = einϕ̃, (3.26)

is obtained. In addition to this, there is an U(1) isometry which is given by ξ̄ = (1, 0, 0).

Since φ is constant, the scalar contribution (3.7) vanishes. For the contribution from

the gravity, we need to employ not eq. (3.6) but the covariant formalism in refs. [36, 37],

since the fluctuations δGµν of the metric is not sub-leading. In the case of the Kerr

geometry, this kind of prescription was applied in ref. [19]. After some calculations, which

is explained in the appendix A.2, the central extension of the Virasoro algebra is given by

1

16πGN
δη=ξn

QC [ξ = ξm] = − i

12

3ℓ

2GN
m3δm+n,0 −

ir2
0

2GNℓ
mδm+n,0 . (3.27)

This means the existence of the Virasoro algebra with the central charge

cIR =
3ℓ

2GN
. (3.28)

Finally we present the expression of the mass and angular momentum from the value

of (3.6) and (3.7) at r̃ → ∞. If we shift it as r0 → r0 + δr0, the canonical variables except

for gϕ̃ϕ̃ = r2
0 +2r0δr0 and N ϕ̃ = − ℓr̃

2r0
+ ℓr̃

2r2
0
δr0 are unchanged and the quantities δM and δJ

are calculable as deformations with respect to the shift of the horizon radius. The angular

momentum is obtained by setting ξ̄ = (0, 0, 1) in (3.6) and (3.7),

δJ =
1

16πGN

∮

r̃=∞
dϕ̃
(

2ξiπjr̃δgij

)

=
δ(r2

0)

4GNℓ
. (3.29)

Furthermore the charge with respect to ξ̄ = (1, 0, 0) becomes zero. This means that

L̄IR
0 = MIRℓ − JIR = 0. From this, the mass and the angular momentum defined at

the horizon turn out to be

MIRℓ = JIR =
r2
0

4GNℓ
. (3.30)

From these the Cardy’s entropy for the chiral CFT2 at the horizon is given by

SIR = 2π

√

cIRJIR

6
=

πr0

2GN
, (3.31)

and this is actually equal to the Bekenstein-Hawking entropy (2.14).
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Notice that SIR < SUV, which originates from the fact cIR < cUV. This is nothing

but the celebrated Zamolodchikov’s c-theorem in two dimensional field theory. In the next

section, we define the c-function from the gravity side, which explains the reason why SUV

gives the maximum possible entropy [17, 11, 15].

4. Holographic renormalization group flow

4.1 Review of Hamilton-Jacobi equation

A key of the gauge/gravity correspondence is that the radial coordinate of the gravity the-

ory is related to the energy scale of the field theory on the boundary. Then renormalization

group flow of the field theory is understood from the gravity side as the variation of bound-

ary values along the radial coordinate. This is the so-called holographic renormalization

group flow, and can be well analyzed by using Hamilton-Jacobi formalism. Let us quickly

review this formalism below.

Since the radial coordinate plays a special role, we reparametrize the metric so as to

be an Euclidean ADM form4

ds2 = N2dρ2 + gij

(

dxi + N idρ
) (

dxj + N jdρ
)

. (4.1)

Here ρ corresponds to the radial coordinate and xi parametrizes the two dimensional space-

time. In fact, as explained in the appendix B, the two dimensional metric and the scalar

field are written as

gij =
1

µ2
ηij , φ =

2ar0

ρ
, µ2 ≡ a4ℓ2

ρ2(e−a2r2
0/ρ2 − e−a2

)
. (4.2)

Note that µ → 0 when ρ → ∞ and µ → ∞ when ρ → r0. Since µ gives the length scale of

the two dimensional field theory, we see that UV region corresponds to the spatial infinity,

and IR region does to the horizon.

By inserting the ADM decomposition of the metric, the Lagrangian becomes

LE =
√−gN

(

R(2) − V (φ) − KijKij + K2
)

−
√−g

2N
(φ̇ − N i∂iφ)2 −

√−gN

2
∂iφ∂iφ, (4.3)

where the dot represents a derivative with respect to ρ, and Kij = 1
2N (ġij − 2∇(iNj)).

R(2) stands for the scalar curvature made from the two dimensional metric gij . Momenta

conjugate to gij and φ are given by πij = −√−g(Kij−gijK) and πφ = − 1
N

√−g(φ̇−N i∂iφ).

Up to total derivative terms, the Hamiltonian density is expressed as HE = πij ġij + πφφ̇−
LE = NH + N iPi in which H and Pi are defined by

1√−g
H =

1

(−g)

(

(πi
i)

2 − (πij)
2 − 1

2
π2

φ

)

+ V (φ) − R(2) +
1

2
(∂iφ)2, (4.4)

1√−g
Pi = −2∇j

(

1√−g
πij

)

+
1√−g

πφ∂iφ. (4.5)

4Here we employ the same notations for canonical variables, N , N i and so on, as in the previous section,

rather than introducing new ones. Hopefully it might not make any confusion.
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It is apparent that H = Pi = 0 since N and N i are just the Lagrange multipliers.

Now let gij(x, ρ) and φ(x, ρ) be the classical solutions of the bulk theory. Then we

denote the cut-off scale as ρc, and represent boundary values like gij(x, ρc) = gij(x) and

φ(x, ρc) = φ(x). Substituting the classical solutions into the Lagrangian (4.3) and integrat-

ing over the three dimensions, we obtain a functional with respect to gij and φ. We denote

this functional as S[g, φ; ρc] = 16πGNI. Using the equations of motion, the variation of

S[g, φ; ρc] with respect to ρc, gij(x) and φ(x) is given by

δS[g, φ; ρc] =
∂S

∂ρc
δρc +

∫

d2x
δS

δġij(x)
δgij(x) +

∫

d2x
δS

δφ̇(x)
δφ(x). (4.6)

Combining this relation with dS
dρc

=
∫

d2xLE, we find that the classical action is independent

of ρc,
∂

∂ρc
S[g, φ; ρc] = −

∫

d2x (NH + N iPi) = 0, (4.7)

and the boundary values of the conjugate variables are

πij(x) =
δS

δgij(x)
, πφ(x) =

δS

δφ(x)
. (4.8)

Thus, the Hamilton-Jacobi equation reduces to only two constraints,

H
(

gij(x), φ(x), πij(x), πφ(x)
)

= 0, Pi
(

gij(x), φ(x), πij(x), πφ(x)
)

= 0, (4.9)

with eq. (4.8). From the constraint H = 0 one obtains the following equation,

1

(
√−g)2

[

−
(

gij
δS

δgij

)2

+

(

δS

δgij

)2

+
1

2

(

δS

δφ

)2
]

= V (φ) − R(2) +
1

2
(∂iφ)2. (4.10)

As we will see later, it is possible to derive the conformal anomaly or the Callan-Symanzik

equation from this equation. The constraint Pi = 0 implies the invariance under the

diffeomorphism of the theory in two dimensional space-time with ρ fixed.

4.2 Beta function and c-function from Hamilton-Jacobi equation

Now let us solve the Hamilton-Jacobi equation (4.10). First, since the bulk action diverges

by taking ρc → ∞, it is necessary to subtract such UV divergence. For this purpose we

divide the functional S[g, φ] into the local counter-term and the non-local part Γ[g, φ],

which is the generating functional with respect to the external sources gij(x) and φ(x).

Next we assign a weight w to each variable such that w = 0 for gij(x), φ(x) and Γ[g, φ]

and w = 1 for ∂i. From these assignment and the equation δΓ =
∫

d2x(δgij(x)δΓ/δgij(x)+

δφ(x)δΓ/δφ(x)), R(2), δΓ/δgij(x) and δΓ/δφ(x) turn out to be w = 2.

An integrand of the local counter-term with w = 0 is written as a function of only the

scalar field, W (φ), and hence the classical action S[g, φ] is expressed as5

S[g, φ] = −
∫

d2x
√−g

{

W (φ) + · · ·
}

+ 16πGNΓ[g, φ]. (4.11)

5It is possible to consider integrands of local counter-terms with w = 2, such as Φ(φ)R(2) and M(φ)(∂iφ)2,

but these can be absorbed into the non-local term Γ for the present case [33].

– 12 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
0

Figure 2: Shape of the “superpotential” W (φ).

The dots represent integrands of local counter-terms with 2 < w. Substituting this

into (4.10) and comparing the terms with w = 0, we obtain

V (φ) = −1

2
W (φ)2 +

1

2

(

∂W (φ)

∂φ

)2

. (4.12)

The potential energy in the left hand side is given by eq. (2.10), and the above equation is

easily solved like

W (φ) =
2

a2ℓ

(

φ2

4
+ 1 − e−a2+ φ2

4

)

. (4.13)

In the range of 0 ≤ φ ≤ 2a (or r0 ≤ ρ), this function, often called “superpotential”,

monotonically increases as φ does. (See figure 2.)

From the terms with w = 2 in eq. (4.10), we obtain the following relation,

〈T i
i (x) 〉 = − 1

8πGN

1

W (φ)
R(2) + β(φ)

1√−g

δΓ

δφ(x)
+

1

16πGN

1

W (φ)
(∂iφ)2. (4.14)

Here the energy momentum tensor is defined as

〈T ij(x) 〉 =
2√−g

δΓ[g, φ]

δgij(x)
, (4.15)

and β(φ) is given by

β(φ) =
2

W (φ)

∂W (φ)

∂φ
. (4.16)

The notation β(φ) is adopted here, since it can actually be interpreted as the beta function

for the dual field theory from the equation

µ
dφ

dµ
=

φ(1 − e−a2+ φ2

4 )

φ2

4 + 1 − e−a2+ φ2

4

= β(φ). (4.17)

The parameter µ in eq. (4.2) is regarded as the scale of the two dimensional theory of

xi-space at a fixed ρ-slice, so it is really possible to identify β(φ) with the beta function.
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Now we assume that the scalar field φ(x) is homogeneous on the two dimensional

surface. Then the third term in the right hand side of eq. (4.14) becomes zero. Furthermore,

the second term vanishes at the points ρ = ∞ and ρ = r0, since β(φ) = 0. Therefore

we obtain,

〈T i
i (x) 〉

∣

∣

∣

∣

ρ=∞ or r0

= − 1

24π

3

GNW (φ)
R(2)

∣

∣

∣

∣

ρ=∞ or r0

. (4.18)

The vanishing of the beta function indicates that the two dimensional theory is conformally

invariant, and the above equation corresponds to the conformal anomaly for the CFT2 at

UV (ρ = ∞) or IR (ρ = r0). We can read off these central charges as 3
GNW (φ) |ρ=∞ = cUV

and 3
GNW (φ) |ρ=r0 = cIR. These agree with the results (3.17) and (3.28) in the last section.

As a remark, it is found that (4.5) leads to ∇j〈T ij〉 = 0. This guarantees the absence of

the gravitational anomaly.

From the calculation of the central charges for the CFT2 (4.18), we can think of a

function at any value of ρ,

C(φ) =
3

GNW (φ)
. (4.19)

This is the so-called c-function for the dual field theory. Because the function W (φ), which

is given by (4.13), is non-negative for 0 ≤ φ ≤ 2a, it is clear that

µ
dC(φ)

dµ
= β(φ)

dC
dφ

= − 3β(φ)2

2GNW (φ)
≤ 0. (4.20)

The equality is satisfied only at ρ = ∞ and ρ = r0 where the dual theory becomes confor-

mally invariant. The monotonicity of this function (4.19) is consistent with the Zamolod-

chikov’s c-theorem [34].

It is more striking that the relation (4.14) obtained from the Hamilton-Jacobi equation

implies the Callan-Symanzik equation for the two dimensional field theory. Let us assume

that Γ[g, φ] is the generating functional of the correlation function in which φ appears as

an external field for a scaling operator O(x). Then n point function in the background of

gij and φ is given by

〈O(x1) · · · O(xn)〉g,φ =
1√−g

δ

δφ(x1)
· · · 1√−g

δ

δφ(xn)
Γ[g, φ], (4.21)

and ordinary n point function 〈O(x1) · · · O(xn)〉 is obtained by setting gij = 1
µ2 ηij and φ =

φ(ρ) in the above equation. By acting with n functional derivatives 1√−g
δ

δφ(x1) · · · 1√−g
δ

δφ(xn)

on eq. (4.14), we obtain
[

−2gij(x)
δ

δgij(x)
+ β(φ(x))

δ

δφ(x)

]

〈O(x1)O(x2) · · · O(xn)〉g,φ (4.22)

+

n
∑

k=1

δ(x − xk)
∂β(φ)

∂φ
(x)〈O(x1) · · · O(xk) · · · O(xn)〉g,φ = (two derivative terms).

Integrating this equation over two dimensional coordinate x and setting gij = 1
µ2 ηij and

φ = φ(ρ), it becomes
(

µ
∂

∂µ
+ β(φ)

∂

∂φ
− nγ(φ)

)

〈O(x1)O(x2) · · · O(xn)〉 = 0, (4.23)

– 14 –



J
H
E
P
0
1
(
2
0
0
9
)
0
1
0

where γ(φ) = −∂β(φ)/∂φ is the anomalous dimension. This is just the Callan-Symanzik

equation of the two dimensional field theory.

In conclusion, with the help of the Hamilton-Jacobi formalism, we have derived the

central charges for CFT2 at UV and IR regions from the conformal anomaly, and they are

certainly connected by the c-function defined from the three dimensional gravity theory.

Our black hole solution interpolates two CFT2 at the infinity and the horizon.

5. Summary and discussion

In this paper, we constructed the new extremal black hole solution in the three dimensional

gravity theory coupled to a single scalar field, and investigated AdS3/CFT2 correspon-

dences which are realized at the spatial infinity and the horizon.

The black hole solution (2.12) which we have found is obtained by choosing the poten-

tial as in eq. (2.10). The potential takes extrema at φ = 0 and φ = 2a, which correspond

to the spatial infinity and the horizon, respectively. Around the spatial infinity and the

horizon, the metric approaches locally AdS3 geometries with the radius L and ℓ. This

means that the near horizon region corresponds to the IR fixed point of two dimensional

field theory, and the spatial infinity does to the UV one. Thus the solution represents the

CFT2-interpolating black hole.

In order to confirm the above feature, we showed that the Virasoro algebras surely

exist at the spatial infinity and the horizon by employing the canonical formulation of

the gravity theory. Near the infinity we used the usual boundary condition (3.10). On

the other hand, near the horizon we took near horizon limit (2.16) and put the boundary

condition (3.25). The central charges are given by cUV (3.17) and cIR (3.28), and they are

related to the corresponding depths of the potential (2.10). It is easy to see the inequality

cIR < cUV, which is consistent with Zamolodchikov’s c-theorem.

From the viewpoint of CFT2 at UV region, the spatial infinity of the black hole is

represented as excitations of only left moving modes. The energy of the geometry is given

by the sum of the black hole mass and the energy of scalar field, which will be interpreted

as that of a domain wall. By using the Cardy’s formula, the entropy was estimated as in

eq. (3.22). From the viewpoint of CFT2 at IR region, the near horizon geometry of the

black hole also corresponds to excitations of only left moving modes. The entropy (3.31)

calculated by using Cardy’s formula precisely agrees with the Bekenstein-Hawking entropy

of the black hole (2.14). As a result, we have obtained the relation SBH = SIR < SUV,

which originates from the c-theorem and clearly explains the reason why maximum possible

entropy conjecture holds.

Furthermore we have investigated the renormalization group flow of two dimensional

field theory from the gravity side. This is the so-called holographic renormalization group

flow, and the Hamilton-Jacobi formalism played an important role for the analyses. In fact,

by using this formalism, we have derived the flow equation (4.10) along each radial surface.

The flow equation is solved order by order with respect to the weight, and we obtained

eq. (4.14) or eq. (4.18) which expresses the conformal anomaly for the CFT2 at the critical

points ρ = ∞ or ρ = r0. Eq. (4.16) is identified with the beta function of dual field theory,
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and the c-function is defined as eq. (4.19). The c-function is monotonically decreasing

along the flow from UV to IR, and Zamolodchikov’s c-theorem is satisfied. Finally, the

Callan-Symanzik equation (4.23) was derived for the two dimensional field theory dual

to the bulk theory of gravity. The conclusion is that two CFT2 satisfying the Virasoro

algebra do live on two boundaries of our black hole solution, and these are connected via

the holographic renormalization group flow.

Recently there are many discussions on the consistency of the CFT2 on the boundary of

AdS3 [38]–[45]. The holographic perspective, such as our solution which connects different

CFT2, will become more useful. Especially, cIR < cUV means that massless modes in the

UV region becomes massive and are integrated out while the energy scale is decreasing.

Although our system is one of toy models, we will have to consider how this process is

explained in the consistent two dimensional field theory.

Moreover, it is an interesting problem to investigate how CFT-interpolating black

holes, such as ours, can be embedded into higher dimensional gravity or superstring theory.

It is known that the BTZ black hole is embedded into black ring solutions or the so-

called M5 system [46]. For example in five dimensions, we can realize the asymptotically

flat multi-centered black ring solutions, for which each near horizon geometry is AdS3.

It is suggested that such multi-centered solutions represent the decay of branes in the

holographic viewpoint [47]. In three dimensions there is also the multi-centered BTZ [48].

The problems about asymptotically AdS multi-centered black holes are left open for the

future work.
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A. Supplementary calculations on central extensions

A.1 At the spatial infinity

Here we give supplementary calculations at the spatial infinity on the central extension

for left moving modes. In this subsection, we denote the metric (2.15) as Ḡµν , and other

quantities with “bar” means that they consist of Ḡµν .

In order to evaluate the central extension, we need to calculate the explicit form of

eq. (3.10). By using the Killing vector (3.11), it is given by Gµν = Ḡµν + D̄µξ̄+
n ν + D̄ν ξ̄+

n µ,
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and the result becomes

Gµν =









− r2

L2 +
2r2

0
Lℓ 0

r2
0
ℓ

0 L2

r2 +
2e−a2

r2
0L3

r4ℓ
0

r2
0
ℓ 0 r2









+ einx+













1
2 in3 +

3ir2
0n

Lℓ
(1+2e−a2

)n2r2
0L2

2r3ℓ
1
2 iLn3 +

2ir2
0n
ℓ

(1+2e−a2
)n2r2

0L2

2r3ℓ
2ie−a2

nr2
0L3

r4ℓ
(1+2e−a2

)n2r2
0L3

2r3ℓ

1
2 iLn3 +

2ir2
0n
ℓ

(1+2e−a2
)n2r2

0L3

2r3ℓ
1
2 iL2n3 +

iLr2
0n

ℓ













. (A.1)

Note that the variation contains the factor einx+
because ξ+

n µ just represents one Fourier

mode of the general coordinate transformation. From the ADM decomposition (3.1), the

two dimensional variables are evaluated as

gij =

(

L2

r2 +
2e−a2

r2
0L3

r4ℓ
0

0 r2

)

+ einx+





2ie−a2
nr2

0L3

r4ℓ
(1+2e−a2

)n2r2
0L3

2r3ℓ
(1+2e−a2

)n2r2
0L3

2r3ℓ
1
2 iL2n3 +

iLr2
0n

ℓ



 ,

N r = einx+ (1 + 2e−a2
)n2r2

0

2ℓr
, Nϕ =

r2
0

ℓr2
+ ieinx+ ℓLn3 + 4r2

0n

2ℓr2
, (A.2)

N =
r

L
− r2

0

ℓr
− ineinx+ 6r2

0 + Ln2ℓ

4ℓr
, φ =

2ar0

r
+ ineinx+ ar0

r
.

The conjugate momenta are calculated as

πij =

(

0
r2
0

ℓr2

r2
0

ℓr2 0

)

+ einx+





−n2 Ln2ℓ+(3−2e−a2
)r2

0
2ℓr i

Lℓn3+4nr2
0

2ℓr2

i
Lℓn3+4nr2

0
2ℓr2 − (1+2e−a2

)L2n2r2
0

ℓr5



 , (A.3)

πφ = einx+ 2a(1 + e−a2
)Ln2r3

0

ℓr4
.

The boundary behaviors in eq. (3.12) are consistent with these equations.

A.2 At the horizon

Here we give supplementary calculations at the horizon on the central extension for left

moving modes. In this subsection, we denote the metric (3.23) as Ḡµν , and other quantities

with “bar” means that they consist of Ḡµν .

In order to evaluate the central extension, we need to calculate the explicit form of

eq. (3.25). By using the Killing vector (3.26), it is given by Gµν = Ḡµν + D̄µξ̄+
n ν + D̄ν ξ̄+

n µ,

and the result becomes

Gµν =







− ℓ2

4 0 − r0ℓ
2 r̃

0 ℓ2

4(1+r̃2) 0

− r0ℓ
2 r̃ 0 r2

0






+ einϕ̃







0 0 0

0 − inℓ2

2(1+r̃2)2
n2r̃ℓ2

4(1+r̃2)

0 n2r̃ℓ2

4(1+r̃2)
2inr2

0






. (A.4)

Note that δGϕ̃ϕ̃ is just a leading contribution. In such a case, the nonlinear terms become

important and we need to employ the covariant formulation, in which the variation of the
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charge is defined as

δηQ
C [ξ] =

∫

dϕ̃ ǫµνϕ̃

{

ξ̄νD̄µδηG
σ

σ − ξ̄νD̄σδηG
µσ + ξ̄σD̄νδηG

µσ +
1

2
δηG

σ
σD̄ν ξ̄µ

− δηG
νσD̄σ ξ̄µ +

1

2
δηG

νσ(D̄µξ̄σ + D̄σ ξ̄µ)

}

. (A.5)

B. Coordinate transformation

We give coordinate transformations which make the solution (2.3) with (2.12) into the

Euclidean ADM form (4.1). Actually this can be done as follows,

ds2 = e2h(r)dr2 +
r2

a4ℓ2

[

dθ2 − 2(e−a2r2
0/r2 − e−a2

)dtdθ
]

= N2dρ2 +
1

µ2

[

−(dτ + N τdρ)2 + (dσ + Nσdρ)2
]

. (B.1)

In the first line, we defined θ ≡ a2ℓϕ + (1 − e−a2
)t. And in the second line we made the

coordinate transformation of

ρ = r,

τ =
1

4

(

θ

e−a2r2
0/r2 − e−a2

− 2t

)

− θ,

σ =
1

4

(

θ

e−a2r2
0/r2 − e−a2

− 2t

)

+ θ. (B.2)

The two dimensional coordinate is denoted by xi = τ, σ. The functions µ, N and N i are

written in terms of (ρ, τ, σ) as

µ2 =
a4ℓ2

ρ2(e−a2r2
0/ρ2 − e−a2

)
,

N2 = e2h(ρ) =
a4ℓ2

ρ2

[

1 − ea2(r2
0/ρ2−1)

]−2
, (B.3)

N τ = Nσ =
a2r2

0e
−a2r2

0/ρ2

4ρ3(e−a2r2
0/ρ2 − e−a2)2

(σ − τ).

In (B.1) the coefficient µ can be regarded as the scale of the two dimensional theory of

(τ, σ)-space at a certain ρ-slice. Since ρ → r0 means µ → ∞, let us call it the IR-region.

On the other hand, ρ → ∞ or µ → 0 indicates the UV-region. Also notice that the scalar

field becomes φ = φ(ρ).

If t and ϕ are tuned, we are able to choose arbitrary (τ, σ) at any radius ρ except for

ρ = r0. But be careful of the transformation (B.2) at the horizon. For example, from the

near horizon limit (2.16),

τ =
ea2

4

(

ℓr0

2

ϕ′

r′
− 2t′

)

1

ǫ
− a2ℓϕ′ , (B.4)

is naively seen to be divergent as ∼ O(1/ǫ). However, since t′, r′ and ϕ′ can be chosen

arbitrary after rewriting (2.16), τ can be kept finite and taken arbitrary if the inside of the

brackets of (B.4) is fine-tuned as ∼ O(ǫ) by the appropriate t′, r′ and ϕ′.
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